Inverter Technology

A Motor

A Motor Technology

At a Glance

- Lifting speed optimized for load:
 - Fast speed with empty hook
 - Medium speed with partial loads
 - Safety speed with full load
- Hoist motor power rated 50% of dual speed motors
- Four configurations:
 - A3 2.3 kW (NB + NC)
 - A5 4.5 kW (ND)
 - A7 9.0 kW (NE)
 - 2xA7 2x 9.0 kW (NF)
- Inverter location:
 - Integrated in hoist cubicle up to ND
 - Installed on crane bridge for NE, NF

A Motor Technology At a Glance

A-motor

Bearing pulse sensor

- Open loop
 - Bearing sensor
- Protection class IP66
- Class H insolation
- Speed range:
 - 25:1 with empty hook
 - 10:1 with rated capacity

A Motor Technology

Load Spectrum and Speed

Average capacity utilization of an industrial crane

- Safety speed for gentle handling heavy loads
- Fast throughput of light loads increases productivity

- Reduced energy consumption
- Less downtime
- Reduced wear and tear
- Lower cost of ownership

A Motor Technology Low Energy Consumption

10 ton hoist		"A" motor	Dual speed motor
Lifting speed	m/min	0.252.5 (7.5)	1 / 6
Motor output	kW	4.5	9.0

- A" motors save energy and cost
- Load-sensitive speeds reduce the required installed motor output
- Inverter technology reduces amperage peaks when switching on the motor
- Not relevant?

BENEFITS

 Up to 50% energy cost savings, compared to traditional dual speed technology

A Motor Technology Faster Handling of Loads

Results		"A" motor	Dual speed motor
Lifting speed	m/min	0.252.5 (7.5)	0.8 / 5.0
Load spectrum	-	Light/medium	Light/medium
Average height (lifting + lowering)	m	1 + 1	1 + 1
Empty hook travel	%	50	50
Loaded hook travel	%	50	50
Handling time, crane 1	min	2,244	
Handling time, crane 2	min	2,407	2,992
Average time required	min	2,325	
Time saving		2	2%

- A motors increase productivity in typical production processes:
 - Faster with light load / empty hook
 - Heavy goods are handled precisely
- A detailed analysis of the work cycles of two cranes in an assembly area proved significant time savings, compared to dual-speed technology

- Significant reduction of handling time
- Increased productivity

A Motor Applications General Manufacturing

- Typical material handling process:
 - **In:** 200 light components and raw material deliveries per week
 - Out: 5 heavy machines per week
- Requirements:
 - Rapid unloading and handling of incoming raw materials
 - Safe lifting of completed machines

- Time savings in handling light loads
- Gentle handling of valuable finished goods at end of assembly line
- Precision speed does not produce excessive heat: extended motor lifetime

A Motor Applications Precast Concrete

- Typical material handling process:
 - Regular lifts of moulds & steel bars
 - Lifting of heavy precast elements
- Requirements:
 - Precise lifting of precast parts out of mould with slower speeds for a longer period of time
 - Fast handling of moulds, steel bars

- Increased productivity
- Time savings due to reduced down-time
- Increased lifetime of motor, compared to dual speed motors with 20% ED in slow speed
- Avoids main/micro motors

A Motor Applications

Additional Crane on Runway

10 ton hoist		"A" motor	Dual speed motor
Speed	m/min	0.252.5 (7.5)	1/6
Motor output	kW	4.5	9.0
Existing 5t motor	Amps	10	10
New 10t motor	Amps	25	100
Total current	Amps	35	110
Runway length	m	50	50
Supply voltage	V	400	400
Voltage drop	%	3,0	3,0
Copper cross section	mm²	15	25
Runway electrification	€	0€	~3,000€
Downtime	hours	0	?

- One 5 t crane exists on a 50 m runway (conductor bar 60 Amps, end feed, 15 mm² copper cross section)
- Customer identified increased production volumes and heavier loads
- Customer requirements:
 - Addition of a 10 t crane on same runway
 - Minimum downtime during installation
 - No changes in existing electrification

- Low amperage of motor permits to use existing runway electrification
- Minimum down-time in production
- No additional investments
- "A" motor technology, not requiring replacement of runway electrification or other changes.

A Motor Applications **Multi Crane Projects**

3 x 20 ton hoist		"A" Motor	Dual speed motor
Speed	m/min	0.252.5 (7.5)	0.5 / 3.0
Motor output	kW	3 x 9	3 x ~13
Daily usage	hours	1	1
Annual workdays	days	240	240
Crane lifetime	years	10	10
Lifecycle energy consumption	kWh	65,000	94,000
Cost per kWh	€/kWh	~0,10	~0,10
Energy lifecycle cost	€	~6,500€	~9,400€
Total amperage	Α	72	177
Required cross section	mm²	15	35
Runway electrification	€	~4,000€	~7,000€

- Investment in a new factory building:
 - Three bridge cranes, each rated 20 ton
 - Common runway, 100 m (center feed)

- 30% energy cost savings, compared to traditional dual speed technology
- Significantly lower investment in runway electrification